4,784 research outputs found

    Realistic Gluino Axion Model Consistent with Supersymmetry Breaking at the TeV Scale

    Get PDF
    The recently proposed model of using the dynamical phase of the gluino to solve the strong CP problem is shown to admit a specific realization in terms of fundamental singlet superfields, such that the breaking of supersymmetry occurs only at the TeV scale, despite the large axion scale of 10^{9} to 10^{12} GeV. Phenomenological implications are discussed.Comment: 12 pp, 2 fig

    A Comparative Study of the Structural Dynamics of Four Terminal Uridylyl Transferases.

    Get PDF
    African trypanosomiasis occurs in 36 countries in sub-Saharan Africa with 10,000 reported cases annually. No definitive remedy is currently available and if left untreated, the disease becomes fatal. Structural and biochemical studies of trypanosomal terminal uridylyl transferases (TUTases) demonstrated their functional role in extensive uridylate insertion/deletion of RNA. Trypanosoma brucei RNA Editing TUTase 1 (TbRET1) is involved in guide RNA 3' end uridylation and maturation, while TbRET2 is responsible for U-insertion at RNA editing sites. Two additional TUTases called TbMEAT1 and TbTUT4 have also been reported to share similar function. TbRET1 and TbRET2 are essential enzymes for the parasite viability making them potential drug targets. For this study, we clustered molecular dynamics (MD) trajectories of four TUTases based on active site shape measured by Pocket Volume Measurer (POVME) program. Among the four TUTases, TbRET1 exhibited the largest average pocket volume, while TbMEAT1's and TbTUT4's active sites displayed the most flexibility. A side pocket was also identified within the active site in all TUTases with TbRET1 having the most pronounced. Our results indicate that TbRET1's larger side pocket can be exploited to achieve selective inhibitor design as FTMap identifies it as a druggable pocket

    Relaxation of the Dynamical Gluino Phase and Unambiguous Electric Dipole Moments

    Full text link
    We propose a new axionic solution of the strong CP problem with a Peccei-Quinn mechanism using the gluino rather than quarks. The spontaneous breaking of this new global U(1) at 10^{11} GeV also generates the supersymmetry breaking scale of 1 TeV (solving the so-called \mu problem at the same time) and results in the MSSM (Minimal Supersymmetric Standard Model) with R parity conservation. In this framework, electric dipole moments become calculable without ambiguity.Comment: Typos corrected and a footnote added, 10 p

    The effect of supersymmetric CP phases on Chargino-Pair Production via Drell-Yan Process at the LHC

    Full text link
    We compute the rates for pp annihilation into chargino-pairs via Drell-Yan process taking into account the effects of supersymmetric soft phases, at proton-proton collider. In particular, the phase of the mu parameter gains direct accessibility via the production of dissimilar charginos. The phases of the trilinear soft masses do not have a significant effect on the cross sections.Comment: 24 pages, 7 figure

    Efficient successor retrieval operations for aggregate query processing on clustered road networks

    Get PDF
    Cataloged from PDF version of article.Get-Successors (GS) which retrieves all successors of a junction is a kernel operation used to facilitate aggregate computations in road network queries. Efficient implementation of the GS operation is crucial since the disk access cost of this operation constitutes a considerable portion of the total query processing cost. Firstly, we propose a new successor retrieval operation Get-Unevaluated-Successors (GUS), which retrieves only the unevaluated successors of a given junction. The GUS operation is an efficient implementation of the GS operation, where the candidate successors to be retrieved are pruned according to the properties and state of the algorithm. Secondly, we propose a hypergraph-based model for clustering successively retrieved junctions by the GUS operations to the same pages. The proposed model utilizes query logs to correctly capture the disk access cost of GUS operations. The proposed GUS operation and associated clustering model are evaluated for two different instances of GUS operations which typically arise in Dijkstra's single source shortest path algorithm and incremental network expansion framework. Our simulation results show that the proposed successor retrieval operation together with the proposed clustering hypergraph model is quite effective in reducing the number of disk accesses in query processing. (C) 2010 Published by Elsevier Inc

    Non-Gravitating Scalar Field in the FRW Background

    Get PDF
    We study interacting scalar field theory non-minimally coupled to gravity in the FRW background. We show that for a specific choice of interaction terms, the energy-momentum tensor of the scalar field vanishes, and as a result the scalar field does not gravitate. The naive space dependent solution to equations of motion gives rise to singular field profile. We carefully analyze the energy-momentum tensor for such a solution and show that the singularity of the solution gives a subtle contribution to the energy-momentum tensor. The space dependent solution therefore is not non-gravitating. Our conclusion is applicable to other space-time dependent non-gravitating solutions as well. We study hybrid inflation scenario in this model when purely time dependent non-gravitating field is coupled to another scalar field.Comment: 7 Pages, 2 figures, RevTeX4, v2:added a section on regularized energy-momentum tensor, references and conclusions modifie

    The Constraints on CP Violating Phases in models with a dynamical gluino phase

    Full text link
    We have analyzed the electric dipole moment and the Higgs mass constraints on the supersymmetric model which offers dynamical solutions to the \mu and strong CP problems. The trilinear coupling phases, and \tan\beta-|\mu| are strongly correlated, particularly in the low-\tan\beta regime. Certain values of the phases of the trilinear couplings are forbidden, whereas the CP violating phase from the chargino sector is imprisoned to lie near a CP conserving point, by the Higgs mass and electric dipole moment constraints.Comment: 19 pages, 11 eps fig

    A color and shape based algorithm for segmentation of white blood cells in peripheral blood and bone marrow images

    Get PDF
    Cataloged from PDF version of article.Computer-based imaging systems are becoming important tools for quantitative assessment of peripheral blood and bone marrow samples to help experts diagnose blood disorders such as acute leukemia. These systems generally initiate a segmentation stage where white blood cells are separated from the background and other nonsalient objects. As the success of such imaging systems mainly depends on the accuracy of this stage, studies attach great importance for developing accurate segmentation algorithms. Although previous studies give promising results for segmentation of sparsely distributed normal white blood cells, only a few of them focus on segmenting touching and overlapping cell clusters, which is usually the case when leukemic cells are present. In this article, we present a new algorithm for segmentation of both normal and leukemic cells in peripheral blood and bone marrow images. In this algorithm, we propose to model color and shape characteristics of white blood cells by defining two transformations and introduce an efficient use of these transformations in a marker-controlled watershed algorithm. Particularly, these domain specific characteristics are used to identify markers and define the marking function of the watershed algorithm as well as to eliminate false white blood cells in a postprocessing step. Working on 650 white blood cells in peripheral blood and bone marrow images, our experiments reveal that the proposed algorithm improves the segmentation performance compared with its counterparts, leading to high accuracies for both sparsely distributed normal white blood cells and dense leukemic cell clusters. (C) 2014 International Society for Advancement of Cytometr

    Nanoplasmonic surfaces enabling strong surface-normal electric field enhancement

    Get PDF
    Cataloged from PDF version of article.Conventional two-dimensional (2D) plasmonic arrays provide electric field intensity enhancement in the plane, typically with a surface coverage around 50% in the plan-view. Here, we show nanoplasmonic three-dimensional (3D) surfaces with 100% surface coverage enabling strong surface-normal field enhancement. Experimental measurements are found to agree well with the full electromagnetic solution. Along with the surface-normal localization when using the plasmonic 3D-surface, observed maximum field enhancement is 7.2-fold stronger in the 3D-surface than that of the 2D counterpart structure. 3D-plasmonic nonplanar surfaces provide the ability to generate volumetric field enhancement, possibly useful for enhanced plasmonic coupling and interactions. © 2013 Optical Society of America
    corecore